
Nix
Nix for haskellers

1 / 21



Nix
Nix for haskellers

20
23

-0
6-

17
NixNix for haskellers

who heard of nix before? who is even familiar with it?



the problem with global state package managers

1. we want to create a haskell program.
2. we install ghc, cabal and zlib to our computer.
3. we add a friend to the repository.
4. their build fails.

2 / 21



the problem with global state package managers

1. we want to create a haskell program.
2. we install ghc, cabal and zlib to our computer.
3. we add a friend to the repository.
4. their build fails.

20
23

-0
6-

17
NixNix for haskellers

the problem with global state package managers

so there is a global state of the installed programs and libraries. that is why i call them “global
state package managers”.



the problem with global state package managers

3 / 21



the problem with global state package managers

20
23

-0
6-

17
NixNix for haskellers

the problem with global state package managers

• in other words, we cannot really help our friend.
• also, two weeks later, we need a different ghc version for a different project. but we already

have ghc installed. so we have to uninstall it first.
• also, two months later, we need to build the first project again but, of course, we cannot

build it anymore now either. and even worse, we do not even remember which ghc version
it successfully built with before.



the problem with global state package managers

▶ not deterministic/reproducible
▶ dependency collisions

4 / 21



the problem with global state package managers

▶ not deterministic/reproducible
▶ dependency collisions

20
23

-0
6-

17
NixNix for haskellers

the problem with global state package managers

• ghcup solves second problem but not first.
• it does not solve the first for zlib either.
• crazy to have a tool that, for these specific dependencies, solves this problem that exists for

any dependency, like a different compiler for example
• and that is stack’s problem too, which would otherwise solve both problems.



what is Nix?

▶ Nix, the purely functional, lazy programming language
▶ Nix, the package manager and build system software
▶ NixOS, the linux distribution
▶ created at utrecht university in 2003
▶ according to https://repology.org/ on its way to becoming inevitable

5 / 21

https://repology.org/


what is Nix?

▶ Nix, the purely functional, lazy programming language
▶ Nix, the package manager and build system software
▶ NixOS, the linux distribution
▶ created at utrecht university in 2003
▶ according to https://repology.org/ on its way to becoming inevitable

20
23

-0
6-

17
NixNix for haskellers

what is Nix?

• the fact that global state causes a problem might have already tipped you off how
functional programming could help

• you will see a lot of code today but you will not see any actual nix because i replaced it
with pseudocode for various reasons.

– type signatures for api
– haskell syntax that stresses better that this really is a pure functional programming

language. functions like mkDerivation make it quite easy to think of it as an impure
configuration language. you really have to remind yourself that mkDerivation could
be a pure function and that its implementation uses the file system is just an
optimization.

– unknown syntax is distracting and always amounts to some mental barrier

https://repology.org/


predefined functions

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

6 / 21



predefined functions

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

20
23

-0
6-

17
NixNix for haskellers

predefined functions

• i will call built artifacts like executables, libraries,... “binaries”. that is easier. and often they
are indeed binaries.

• so what is the task package managers or a build systems? to provide binaries. so nix needs
to predefine a function returning a Binary. and nix calls this mkDerivation.

• what is a Binary?
• what are the ingredients for a Binary?
• two helper functions i will explain when using them



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 mkDerivation
20 [ghc, cabal, zlib]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

7 / 21



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 mkDerivation
20 [ghc, cabal, zlib]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

20
23

-0
6-

17
NixNix for haskellers

explain importDirectory



1 let
2 ghc :: Binary
3 ghc =
4 mkDerivation
5 [perl, autoconf, automake]
6 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")
7 "..."
8 cabal :: Binary
9 cabal = mkDerivation...

10 zlib :: Binary
11 zlib = mkDerivation...
12 perl :: Binary
13 perl = mkDerivation...
14 autoconf :: Binary
15 autoconf = mkDerivation...
16 automake :: Binary
17 automake = mkDerivation...
18 in
19 mkDerivation
20 [ghc, cabal, zlib]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

8 / 21



1 let
2 ghc :: Binary
3 ghc =
4 mkDerivation
5 [perl, autoconf, automake]
6 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")
7 "..."
8 cabal :: Binary
9 cabal = mkDerivation...

10 zlib :: Binary
11 zlib = mkDerivation...
12 perl :: Binary
13 perl = mkDerivation...
14 autoconf :: Binary
15 autoconf = mkDerivation...
16 automake :: Binary
17 automake = mkDerivation...
18 in
19 mkDerivation
20 [ghc, cabal, zlib]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

20
23

-0
6-

17
NixNix for haskellers

explain fetchTarball



how to run the binary? - Nix command reference

nix-build path - build a Nix expression
The nix-build command builds the derivations described by the Nix expres-
sions in path. If the build succeeds, it places a symlink to the result in the
current directory.

https://nixos.org/manual/nix/stable/command-ref/nix-build.html

nix-shell path - start an interactive shell based on a Nix expression
The command nix-shell will build the dependencies of the specified derivation,
but not the derivation itself. [. . . ] This is useful for reproducing the environment
of a derivation for development.

https://nixos.org/manual/nix/stable/command-ref/nix-shell.html

▶ symlink to binary of our haskell project by executing nix-build default.nix
▶ interactive shell with access to ghc by executing nix-shell default.nix

9 / 21

https://nixos.org/manual/nix/stable/command-ref/nix-build.html
https://nixos.org/manual/nix/stable/command-ref/nix-shell.html


how to run the binary? - Nix command reference

nix-build path - build a Nix expression
The nix-build command builds the derivations described by the Nix expres-
sions in path. If the build succeeds, it places a symlink to the result in the
current directory.

https://nixos.org/manual/nix/stable/command-ref/nix-build.html

nix-shell path - start an interactive shell based on a Nix expression
The command nix-shell will build the dependencies of the specified derivation,
but not the derivation itself. [. . . ] This is useful for reproducing the environment
of a derivation for development.

https://nixos.org/manual/nix/stable/command-ref/nix-shell.html

▶ symlink to binary of our haskell project by executing nix-build default.nix
▶ interactive shell with access to ghc by executing nix-shell default.nix

20
23

-0
6-

17
NixNix for haskellers

how to run the binary? - Nix command reference

1. usually, we run a binary by typing its name into our terminal, which then finds a file on the
file system with that name. but all we have so far is an expression that evaluates to a
Binary.

2. there is a “path” argument. so first, we need to save our nix expression to a file.
3. – nix-build is very nice didactically because we can very easily imagine that it just

evaluates the expression in default.nix and saves the resulting binary to the file
system.

– nix-shell is a bit weird because it somehow does not evaluate the expression in
default.nix but the first argument, of the function application that is our expression.
so maybe i simplified too much when saying mkDerivation returns a single Binary.

https://nixos.org/manual/nix/stable/command-ref/nix-build.html
https://nixos.org/manual/nix/stable/command-ref/nix-shell.html


problem solved?

▶ situation
▶ source locations of all transitive dependencies in default.nix
▶ building commands for all transitive dependencies in default.nix

▶ no more dependency collisions
▶ more reproducible
▶ but too many details in default.nix

10 / 21



problem solved?

▶ situation
▶ source locations of all transitive dependencies in default.nix
▶ building commands for all transitive dependencies in default.nix

▶ no more dependency collisions
▶ more reproducible
▶ but too many details in default.nix

20
23

-0
6-

17
NixNix for haskellers

problem solved?

we specify in detail how to build which source version of all transitive dependencies.



1 let
2 ghc :: Binary
3 ghc =
4 mkDerivation
5 [perl, autoconf, automake]
6 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")
7 "..."
8 cabal :: Binary
9 cabal = mkDerivation...

10 zlib :: Binary
11 zlib = mkDerivation...
12 perl :: Binary
13 perl = mkDerivation...
14 autoconf :: Binary
15 autoconf = mkDerivation...
16 automake :: Binary
17 automake = mkDerivation...
18 in
19 mkDerivation
20 [ghc, cabal, zlib]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

1 type Binary = ByteString -- list of bits
2

3 mkDerivation ::
4 -- | dependencies
5 [Binary] ->
6 -- | source directory tarball
7 ByteString ->
8 -- | build commands
9 Text ->

10 -- | built binary
11 Binary
12

13 fetchTarball :: Text -> ByteString
14 importDirectory :: FilePath -> ByteString

11 / 21



1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in
19 mkDerivation
20 [pkgs ! "ghc", pkgs ! "cabal", pkgs ! "zlib"]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary 12 / 21



1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in
19 mkDerivation
20 [pkgs ! "ghc", pkgs ! "cabal", pkgs ! "zlib"]
21 (importDirectory ".")
22 "cabal build && cp $(cabal list-bin exes) $out"
23 :: Binary

20
23

-0
6-

17
NixNix for haskellers

intermediate step



default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz"
7 )
8 in
9 mkDerivation

10 [pkgs ! "ghc", pkgs ! "cabal", pkgs ! "zlib"]
11 (importDirectory ".")
12 "cabal build && cp $(cabal list-bin exes) $out"
13 :: Binary

13 / 21



default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 )
8 in
9 mkDerivation

10 [pkgs ! "ghc", pkgs ! ...]
11 (importDirectory ".")
12 "cabal build && cp $(cab..."
13 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in pkgs
19 :: Map Text Binary

14 / 21

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 )
8 in
9 mkDerivation

10 [pkgs ! "ghc", pkgs ! ...]
11 (importDirectory ".")
12 "cabal build && cp $(cab..."
13 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in pkgs
19 :: Map Text Binary

20
23

-0
6-

17
NixNix for haskellers

• why does this make sense? because these definitions are useful for anyone with a haskell
project. even more, we can put more definitions in there, thousands more, every binary we
know how to build. and these definitions will then be useful for anyone with any project.

• you might ask, does that not mean we fetch thousands of binaries? fetchTarball
downloads the expression as a Text, not a Map of Binarys.

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 "let\
2 \ pkgs :: Map Text Binary\
3 \ pkgs = M.fromList\
4 \ [\
5 \ (\
6 \ \"ghc\",\
7 \ mkDerivation\
8 \ [pkgs ! \"perl\", pkgs ! \"autoconf\", pkgs ! \"automake\"]\
9 \ (fetchTarball \"https://downloads.haskell.org/ghc-9.4.3-src.tar\")\

10 \ \"\"\
11 \ ),\
12 \ (\"cabal\", mkDerivation [] \"\" \"\"),\
13 \ (\"zlib\", mkDerivation [] \"\" \"\"),\
14 \ (\"perl\", mkDerivation [] \"\" \"\"),\
15 \ (\"autoconf\", mkDerivation [] \"\" \"\"),\
16 \ (\"automake\", mkDerivation [] \"\" \"\")\
17 \ ]\
18 \in pkgs\
19 \:: Map Text Binary\
20 \"
21 :: Text 15 / 21

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 )
8 in
9 mkDerivation

10 [pkgs ! "ghc", pkgs ! ...]
11 (importDirectory ".")
12 "cabal build && cp $(cab..."
13 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in pkgs
19 :: Map Text Binary

16 / 21

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 )
8 in
9 mkDerivation

10 [pkgs ! "ghc", pkgs ! ...]
11 (importDirectory ".")
12 "cabal build && cp $(cab..."
13 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (fetchTarball "https://downloads.haskell.org/ghc-9.4.3-src.tar")

10 "..."
11 ),
12 ("cabal", mkDerivation...),
13 ("zlib", mkDerivation...),
14 ("perl", mkDerivation...),
15 ("autoconf", mkDerivation...),
16 ("automake", mkDerivation...)
17 ]
18 in pkgs
19 :: Map Text Binary

20
23

-0
6-

17
NixNix for haskellers

1. – that is while i need interpret here.
– so next, you might ask, ok, we do not download thousands of binaries but does

interpret not build thousands of binaries? no because lazy.
2. – speaking of the fetchTarball function, we saw it before to fetch source directories,

is this a pure function or does it violate referential transparency?
– why does it matter by the way? a build is reproducible if and only if its expression

evaluates to the same value every time. so reproducibility of the package manager
corresponds to referential transparency of the language.

– but fetchTarball unfortunately does violate referential transparency

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (

10 fetchTarball
11 "https://downloads.haskell.org/ghc-9.4.3-src.tar"
12 "eaf63949536ede50ee39179f2299d5094eb9152d87cc6fb2175006bc98e8905a"
13 )
14 "..."
15 ),
16 ("cabal", mkDerivation...),
17 ("zlib", mkDerivation...),
18 ("perl", mkDerivation...)
19 ]
20 in pkgs
21 :: Map Text Binary

17 / 21

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (

10 fetchTarball
11 "https://downloads.haskell.org/ghc-9.4.3-src.tar"
12 "eaf63949536ede50ee39179f2299d5094eb9152d87cc6fb2175006bc98e8905a"
13 )
14 "..."
15 ),
16 ("cabal", mkDerivation...),
17 ("zlib", mkDerivation...),
18 ("perl", mkDerivation...)
19 ]
20 in pkgs
21 :: Map Text Binary

20
23

-0
6-

17
NixNix for haskellers

so fetchTarball actually requires a second argument, which is a hash of the tarball. so
fetchTarball can only successfully evaluate to one value. otherwise, nix will detect the
referential transparency violation by comparing hashes and terminate immediately. so you could
argue that impurity cannot be observed from within the language. also, when our friend tries to
build our haskell project and the online source of one of the dependencies has changed, nix can
report which one it is, my friend can tell me, and we can investigate.

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz"
7 "05rpnsnkwibj36vcmxd55ms2brl3clbi5gh5cnks6qaw2x6mdsag"
8 )
9 in

10 mkDerivation
11 [pkgs ! "ghc", pkgs ! "cabal", pkgs ! "zlib"]
12 (importDirectory ".")
13 "cabal build && cp $(cabal list-bin exes) $out"
14 :: Binary

18 / 21



default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 "05rpnsnkwibj36vcmxd5..."
8 )
9 in

10 mkDerivation
11 [pkgs ! "ghc", pkgs ! ...]
12 (importDirectory ".")
13 "cabal build && cp $(cab..."
14 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (

10 fetchTarball
11 "https://downloads.haskell.org/ghc-9.4.3-src.tar"
12 "eaf63949536ede50ee39179f2299d5094eb9152d87cc6fb2175006bc98e8905a"
13 )
14 "..."
15 ),
16 ("cabal", mkDerivation...),
17 ("zlib", mkDerivation...),
18 ("perl", mkDerivation...)
19 ]
20 in pkgs
21 :: Map Text Binary 19 / 21

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


default.nix

1 let
2 pkgs :: Map Text Binary
3 pkgs =
4 interpret
5 (fetchTarball
6 "https://github.com/..."
7 "05rpnsnkwibj36vcmxd5..."
8 )
9 in

10 mkDerivation
11 [pkgs ! "ghc", pkgs ! ...]
12 (importDirectory ".")
13 "cabal build && cp $(cab..."
14 :: Binary

https://github.com/NixOS/nixpkgs/archive/
7edcdf7b169c33c.tar.gz

1 let
2 pkgs :: Map Text Binary
3 pkgs = M.fromList
4 [
5 (
6 "ghc",
7 mkDerivation
8 [pkgs ! "perl", pkgs ! "autoconf", pkgs ! "automake"]
9 (

10 fetchTarball
11 "https://downloads.haskell.org/ghc-9.4.3-src.tar"
12 "eaf63949536ede50ee39179f2299d5094eb9152d87cc6fb2175006bc98e8905a"
13 )
14 "..."
15 ),
16 ("cabal", mkDerivation...),
17 ("zlib", mkDerivation...),
18 ("perl", mkDerivation...)
19 ]
20 in pkgs
21 :: Map Text Binary

20
23

-0
6-

17
NixNix for haskellers

• notice how this left hash actually depends transitively on the content of the online source
code. this left hash depends on this right file and therefore this right hash, and this right
hash depends on the content of the online source.

• so far we seem to need to rebuild ghc and all transitive dependencies every time we restart
our computer.

• we need some kind of sharing that outlives restarts. caching.
• notice that we can compute a hash for a binary before building it just from mkDerivation’s

arguments... different binaries, have different nix expressions, which have different hashes.

https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz
https://github.com/NixOS/nixpkgs/archive/7edcdf7b169c33c.tar.gz


caching/sharing

1. Nix can compute a binaries hash before building it.
2. lookup by that hash in a local cache for built binaries
3. lookup by that hash in an online cache for built binaries
4. otherwise, build and cache by that hash.
▶ no indeterminism via false cache hits thanks to cryptographic SHA 256 hashing
▶ no dependency collision thanks to cryptographic SHA 256 hashing
▶ secure sharing of local cache between different users thanks to cryptographic SHA

256 hashing

20 / 21



caching/sharing

1. Nix can compute a binaries hash before building it.
2. lookup by that hash in a local cache for built binaries
3. lookup by that hash in an online cache for built binaries
4. otherwise, build and cache by that hash.
▶ no indeterminism via false cache hits thanks to cryptographic SHA 256 hashing
▶ no dependency collision thanks to cryptographic SHA 256 hashing
▶ secure sharing of local cache between different users thanks to cryptographic SHA

256 hashing

20
23

-0
6-

17
NixNix for haskellers

caching/sharing

did we just reintroduce global state?



conclusion

▶ a functional programming language can be a package manager and build system
▶ reproducibility of the package manager corresponds to referential transparency in

the language
▶ caching of the package manager corresponds to sharing in the language
▶ i do not know what avoiding dependency collision corresponds to

21 / 21


