
comparison of Haskell and Flow

1 Languages

1.1 Haskell

Haskell is mainly characterized by being purely functional and lazy. It has an
expressive static type system with an above average focus on soundness. Its
expressive type system benefits a lot from being at the forefront of language
research as it is the choice of many language researches for trying out new
ideas.

1.2 Flow

Flow is mainly characterized by being a statically typed language that is very
close to and compiles to JavaScript. It is very similar to TypeScript but has
made significantly better design choices with respect to soundness. It was
released by Facebook shortly after TypeScript’s appearance. It is used heavily
in Facebook software.

1

2 Overview

comparison aspect Haskell Flow

support for alge-
braic data types,
pattern matching

support for recursion. tagged sum types.
pattern matching syntax.

support for recursion. untagged sum types.
idiomatic manual tags. pattern matching
via flow-sensitive typing.

support for dif-
ferent flavours of
polymorphism

parametric polymorphism, deduced type
varible instantiation, explicit type varible
instantiation with TypeApplications lan-
guage extension. ad hoc polymorphism via
type classes.

parametric polymorphism, both deduced
and explicit type varible instantiation. ob-
ject oriented style ad hoc polymorphism.

Error and/or ex-
ception handling

pure code raises imprecise exceptions. IO
code raises synchronous exceptions or
throws asynchronous exceptions to other
threads.

type never without inhabitant deduced
for functions guaranteed to throw. excep-
tion semantics like Haskell’s synchronous
exceptions.

Memory manage-
ment

generational garbage collector [Guic]. sup-
port for finalizers[Feu20].

JavaScript engine’s mark-and-sweep
garbage collector [Doc22b]

Support for strict-
ness and laziness

lazy by default. strict with Strict lan-
guage extension[Guia].

strict. laziness only manually via anony-
mous functions without arguments.

3 More extensive discussion of the comparison

3.1 Support for algebraic data types, pattern matching

3.1.1 Haskell

Here is an example of Haskell’s support for algebraic data types and pattern
matching.

1 import Prelude hiding (Bool (..))
2

3 data Boolean = False | True
4 data SomeBooleans = One Boolean | Many Boolean SomeBooleans
5

6 someBooleans :: SomeBooleans
7 someBooleans =

2

8 Many False $
9 Many False $

10 One True
11

12 oneBoolean :: Boolean
13 oneBoolean =
14 case someBooleans of
15 One b -> b
16 Many _ bs ->
17 case bs of
18 One b -> b
19 Many b _ -> b
20

21 foldSomeBooleans ::
22 (Boolean -> result) ->
23 (Boolean -> result -> result) ->
24 SomeBooleans ->
25 result
26 foldSomeBooleans one _many (One b) = one b
27 foldSomeBooleans one many (Many b bs) =
28 many b (foldSomeBooleans one many bs)

Code Block 1: algebraic data types in Haskell

Notice the recursive use of SomeBooleans in line 4.

Haskell’s sum types are tagged sum types. They represent a disjoint union. Even
if you construct the sum of twice the same type, there is a tag distinguishing
values as either belonging to the left or the right summand. For example
values of a type data Either = Left Boolean | Right Boolean look like
Left False, Right False,. . . Left and Right are the tags. False, True, One,
Many are the tags in code block 1.

3.1.2 Flow

In Flow, all boolean, number, and string literals denote a predefined type besides
being term level literals. For example there is a predefined type false. The
only inhabitant of this type is the term level value false.

3

Flow supports algebraic data types and pattern matching via a code idiom that
makes heavy use of string literal singleton types, which were explained in the
previous paragraph, for tags.

Here is an example of this code idom.

1 type Boolean = "false" | "true";
2 type SomeBooleans =
3 {tag: "one", value: Boolean} |
4 {tag: "many", head: Boolean, tail: SomeBooleans};
5

6 const someBooleans: SomeBooleans =
7 {
8 tag: "many",
9 head: "false",

10 tail: {
11 tag: "many",
12 head: "false",
13 tail: {
14 tag: "one",
15 value: "true",
16 }
17 }
18 };

Notice the recursive use of SomeBooleans in line 4.

Flow’s sum types (| operator) are untagged sum types. Therefore, manual tags
are commonly added as record fields. The tag record field assumes this role in
the code block above. Without them, there would be no systematic way to do
pattern matching.

Being untagged allows Flow’s sum types to be supertypes of their summands
too. boolean | string is a supertype of boolean for example. This is not the
case for Haskell’s tagged sum types.

Here is an example of how Flow supports pattern matching.

1 const oneBoolean: Boolean =
2 someBooleans.tag === "one" ? someBooleans.value :
3 someBooleans.tail.tag === "one" ? someBooleans.tail.value :
4 someBooleans.tail.head;
5

4

6 const foldSomeBooleans =
7 <T,>(
8 one: (_: Boolean) => T,
9 many: (_b: Boolean, _r: T) => T,

10 sB: SomeBooleans,
11): T =>
12 sB.tag === "one"
13 ? one(sB.value)
14 : many(sB.head, foldSomeBooleans(one, many, sB.tail))

The ? and : operators are the normal conditional ternary operator of JavaScript[Doc22a].
We could have nested if statements just as well.

JavaScript does not have any pattern matching syntax. Flow, unwilling to add
term level syntax to JavaScript, support pattern matching via flow-sensitive typ-
ing. Checks like someBooleans.tag === "one" determine the accessability and
type of record fields like value, head, and tail. Without that check as for ex-
ample in const oneBoolean: Boolean = someBooleans.value;, Flow would
produce an error as Cannot get ‘someBooleans.value‘ because property
‘value‘ is missing in object type. This way, pattern matching in Flow
reaches the same level of type safety as in a language with syntax support like
Haskell.

3.2 Support for different flavours of polymorphism

3.2.1 Parametric polymorphism in Haskell

Haskell supports parametric polymorphism as follows.

1 data Pair a b = Pair {component0 :: a, component1 :: b}
2

3 swap :: Pair a b -> Pair b a
4 swap (Pair {component0, component1}) =
5 Pair {component0 = component1, component1 = component0}

The parametrically polymorphic function swap could then be used with explicit
type variable instantiation as follows.

1 {-# language TypeApplications #-}
2

3 pair :: Pair Bool String

5

4 pair = Pair {component0 = False, component1 = ""}
5

6 test :: Pair String Bool
7 test = swap @Bool @String pair
8 -- == Pair {component0 = "", component1 = False}

This requires the TypeApplications language extension[Guib].

Haskell can usually deduce the type variable instantiation too.

1 pair :: Pair Bool String
2 pair = Pair {component0 = False, component1 = ""}
3

4 test :: Pair String Bool
5 test = swap pair
6 -- == Pair {component0 = "", component1 = False}

Haskell compilers implement parametric polymorphism by boxing “every value,
so all polymorphic operations can be expressed in terms of operations on
pointers” ([KS23]).

3.2.2 Parametric polymorphism in Flow

Flow supports parametric polymorphism as follows.

1 type Pair<T, U> = {component0: T, component1: U};
2

3 const swap =
4 <T, U>({component0, component1}: Pair<T, U>): Pair<U, T> =>
5 ({component0: component1, component1: component0});

The parametrically polymorphic function swap could then be used with explicit
type variable instantiation as follows.

1 const pair: Pair<boolean, string> =
2 {component0: false, component1: ""};
3

4 const test: Pair<string, boolean> = swap<boolean, string>(pair);
5 // === {component0: "", component1: false}

Flow can usually deduce the type variable instantiation too. But less often than
Haskell so.

6

1 const pair: Pair<boolean, string> =
2 {component0: false, component1: ""};
3

4 const test: Pair<string, boolean> = swap(pair);
5 // === {component0: "", component1: false}

3.2.3 Ad hoc polymorphism in Haskell

Haskell supports ad hoc polymorphism via its language feature of type classes
as follows.

1 import Data.List (findIndex)
2 import Prelude hiding (Eq)
3

4 data TwoBools = TwoBools {bool0 :: Bool, bool1 :: Bool}
5

6 class Eq a where
7 equals :: a -> a -> Bool
8

9 instance Eq TwoBools where
10 equals a b = bool0 a == bool0 b && bool1 a == bool1 b

The ad hoc polymorphic function equals could then be used in a parametrically
polymorphic function elemIndex as follows.

1 elemIndex :: (Eq a) => a -> [a] -> Maybe Int
2 elemIndex a as = findIndex (\b -> equals a b) as
3

4 twoBools :: TwoBools
5 twoBools = TwoBools {bool0 = False, bool1 = True}
6

7 test :: Maybe Int
8 test = elemIndex twoBools [twoBools] -- == Just 0

3.2.4 Ad hoc polymorphism in Flow

Flow supports ad hoc polymorphism using a more object oriented technique,
which involves bundling functions with data, as follows.

7

1 class TwoBools {
2 bool0: boolean;
3 bool1: boolean;
4 equals(a: TwoBools, b: TwoBools): boolean {
5 return a.bool0 === b.bool0 && a.bool1 === b.bool1;
6 }
7 constructor(bool0: boolean, bool1: boolean): void
8 {this.bool0 = bool0; this.bool1 = bool1;}
9 }

Code Block 2: object oriented style ad hoc polymorphism in Flow

The function equals could then be used in a parametrically polymorphic
function elemIndex as follows.

1 interface HasEquals<T> {equals(T, T): boolean};
2

3 const elemIndex =
4 <T,>(a: T & HasEquals<T>, as: Array<T>): number =>
5 as.findIndex((b) => a.equals(a, b));
6

7 const twoBools: TwoBools = new TwoBools(false, true);
8

9 const test: number = elemIndex(twoBools, [twoBools]); // === 0

Ad hoc polymorphism can furthermore be achieved in Flow via sum types in
some situations because Flow’s untagged sum types are supertypes of their
summands as explained in section 3.1.2.

1 type TwoBools = {bool0: boolean, bool1: boolean};
2

3 type ShowInput = boolean | string | TwoBools;
4 const show =
5 (a: ShowInput): string =>
6 typeof a === "boolean" ? (a ? "true" : "false") :
7 typeof a === "string" ? "\"" + a + "\"" :
8 "(" + show(a.bool0) + ", " + show(a.bool1) + ")";

Code Block 3: ad hoc polymorphism via sum types in Flow

The ad hoc polymorphic function show could then be used in a parametrically
polymorphic function showAndCombine as follows.

8

1 const showAndCombine =
2 <T: ShowInput,>(a: T): [T, string] =>
3 [a, show(a)];
4

5 const test: [boolean, string] = showAndCombine(false); // [false, "false"]

However, this technique stops working quickly when there are multiple arguments
of the type T that we want the implementation to depend on. The reason is
explained in section 4.1.

And even without multiple arguments of the type that we want the behavior
to depend on, there is no systematic way of distinguishing the summands of
the untagged sum ShowInput unless manual tags introduced as exemplified in
section 3.1.2. JavaScript’s typeof operator can only return primitive JavaScript
types. show could only cover the case for TwoBools because the other possible
cases of ShowInput are primitive JavaScript types.

4 Appendix

4.1 Ad hoc polymorphism via sum types does not work in Flow

Can we apply the technique of ad hoc polymorphism via sum types in Flow,
which we used for show in code block 3, to equals in code block 2? equals’s type
would become (EqualsInput, EqualsInput) => boolean where EqualsInput,
analogous to ShowInput in code block 3, is a large untagged sum type of all the
types we want to use equals with, like boolean, string, and TwoBools. But
then the call equals(false, "") would type check although we only want to
define equals for all pairs of the same type in EqualsInput.

Can we maybe use parametric polymorphism to enforce that both arguments are
of the same type in EqualsInput? Here is a simplified example to demonstrate
the problem we run into next.

1 type EqualsInput = boolean | string;
2 const f =
3 <T: EqualsInput,>(a: T, b: T): boolean =>
4 typeof a === "boolean" ? b : false; // type error

The following type error confirms that a: boolean does not imply b: boolean.

9

Cannot return `(typeof a) === "boolean" ? b : false` because
string [1] is incompatible with boolean [2]. [incompatible-return]

References:

3: <T: EqualsInput,>(a: T, b: T): boolean =>
^ [1]

3: <T: EqualsInput,>(a: T, b: T): boolean =>
^ [2]

a is of type boolean. That is, a is either false or true. So false or true
inhabit T. Does that not mean that T is boolean? It does not because there are
many more types inhabited by false and true as explained in section 3.1.2. All
supertypes of boolean are inhabited by false and true. boolean | string
for example.

In other words, f(false, ""); can actually type check given
f: <T: EqualsInput,>(a: T, b: T) => boolean. For example by instan-
tiating T to boolean | string. This problem of f might be a surprising
consequence of the presence of subtyping for some.

Flow’s documentation seems to offer the solution of “intersections of functions”
([Doc]) for this very problem.

1 type TwoBools = {bool0: boolean, bool1: boolean};
2

3 const equals:
4 ((a: boolean, b: boolean) => boolean) &
5 ((a: string, b: string) => boolean) &
6 ((a: TwoBools, b: TwoBools) => boolean)
7 = (a, b) =>
8 typeof a === "boolean" ? a === b :
9 typeof a === "string" ? a === b :

10 equals(a.bool0, b.bool0) && equals(a.bool1, b.bool1);

But this code does not type check properly in Flow version 0.197.0. This
situation might or might not improve in future versions. But even then would
using equals in a parametrically polymorphic function incur an unacceptable
amount of boilerplate. The entire function intersection type and the pattern
match would need to be reperformed for every parametrically polymorphic
caller as follows.

10

1 const elemIndex:
2 ((a: boolean, as: Array<boolean>) => number) &
3 ((a: string, as: Array<string>) => number) &
4 ((a: TwoBools, as: Array<TwoBools>) => number)
5 = (a, as) =>
6 typeof a === "boolean" ? as.findIndex((b) => equals(a, b)) :
7 typeof a === "string" ? as.findIndex((b) => equals(a, b)) :
8 as.findIndex((b) => equals(a, b));
9

10 const twoBools: TwoBools = {bool0: false, bool1: true};
11

12 const test: number = elemIndex(twoBools, [twoBools]); // === 0

References
[Doc] Flow Documentation. Intersection of function types. url: https://

flow.org/en/docs/types/intersections/#toc-intersection-
of-function-types (visited on 01/21/2023).

[Doc22a] MDN Web Docs. Conditional (ternary) operator. Dec. 13, 2022.
url: https : / / developer . mozilla . org / en - US / docs / Web /
JavaScript/Reference/Operators/Conditional_Operator (vis-
ited on 01/21/2023).

[Doc22b] MDN Web Docs. Memory management, Memory management. Dec. 13,
2022. url: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Memory_Management#garbage_collection (visited
on 01/21/2023).

[Feu20] David Feuer. ‘readFile‘ leaks file descriptors in the presence of
asynchronous exceptions. Dec. 23, 2020. url: https://gitlab.
haskell.org/ghc/ghc/-/issues/19114#note_319906 (visited on
01/21/2023).

[Guia] GHC User Guide. Language extensions, Strict-by-default pattern
bindings. url: https://downloads.haskell.org/ghc/latest/
docs/users_guide/exts/strict.html#extension-Strict (vis-
ited on 01/21/2023).

[Guib] GHC User Guide. Language extensions, Visible type application. url:
https://downloads.haskell.org/ghc/latest/docs/users_
guide/exts/type_applications.html (visited on 01/21/2023).

11

https://flow.org/en/docs/types/intersections/#toc-intersection-of-function-types
https://flow.org/en/docs/types/intersections/#toc-intersection-of-function-types
https://flow.org/en/docs/types/intersections/#toc-intersection-of-function-types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#garbage_collection
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management#garbage_collection
https://gitlab.haskell.org/ghc/ghc/-/issues/19114#note_319906
https://gitlab.haskell.org/ghc/ghc/-/issues/19114#note_319906
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/strict.html#extension-Strict
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/strict.html#extension-Strict
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/type_applications.html

[Guic] GHC User Guide. Runtime system (RTS) options, RTS options
to control the garbage collector, --copying-gc. url: https : / /
downloads . haskell . org / ghc / latest / docs / users _ guide /
runtime_control.html#rts- flag--- copying- gc (visited on
01/21/2023).

[KS23] Gabriele Keller and Tom Smeding. Concepts of Programming Lan-
guage Design, Parametric Polymorphism. Jan. 10, 2023. url: http:
//www.cs.uu.nl/docs/vakken/mcpd/2021/website/slides/
Polymorphism.pdf (visited on 01/21/2023).

12

https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-flag---copying-gc
https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-flag---copying-gc
https://downloads.haskell.org/ghc/latest/docs/users_guide/runtime_control.html#rts-flag---copying-gc
http://www.cs.uu.nl/docs/vakken/mcpd/2021/website/slides/Polymorphism.pdf
http://www.cs.uu.nl/docs/vakken/mcpd/2021/website/slides/Polymorphism.pdf
http://www.cs.uu.nl/docs/vakken/mcpd/2021/website/slides/Polymorphism.pdf

	Languages
	Haskell
	Flow

	Overview
	More extensive discussion of the comparison
	Support for algebraic data types, pattern matching
	Haskell
	Flow

	Support for different flavours of polymorphism
	Parametric polymorphism in Haskell
	Parametric polymorphism in Flow
	Ad hoc polymorphism in Haskell
	Ad hoc polymorphism in Flow

	Appendix
	Ad hoc polymorphism via sum types does not work in Flow

